Hydrins

Navigation-grade INS for hydrographic survey

Hydrins is a high-performance Inertial Navigation System (INS) based on Exail Fiber-Optic Gyroscope (FOG) technology, electronics, and embedded processing. Compact and lightweight, it delivers highly accurate real-time position, heading, attitude and speed data, for direct georeferencing.

FEATURES & BENEFITS

- · High-accuracy 3D positioning with heading, roll and pitch.
- · Compact, lightweight, and reliable
- Benefiting from FOG (Fiber-Optic Gyroscope)
 unique strap-down technology
- · Compatible with all GNSS receivers
- · Simplified Integration with a single GNSS antenna setup
- · Automatic GNSS drop-out / multipath management
- Realtime heave and delayed Smart Heave™
- Permanent quality data thanks to Exail Delph INS post-processing software

- · Ethernet, web server (GUI)
- · Fast alignment (no aiding sensor)
- IMU option for high accuracy platform stabilization
- · Low latency for real time control loops
- Static and dynamic alignment modes, with and without GNSS
- · 4Gb embedded data logger
- · Versatile I/O options for an easy integration
- · Maintenance-free
- ITAR-free
- 24/7 worldwide technical assistance

APPLICATION

- · Port and harbour maintenance
- · Seafloor characterization
- · Bathymetric survey
- Platform stabilization
- · Offshore construction engineering

TECHNICAL SPECIFICATIONS

Performance

Heading(1) (°)	0.01					
Roll & Pitch ⁽²⁾ (°)	0.01					
Heave/Smart Heave ⁽³⁾	5 cm or 5% / 2 cm or 2%					
Bias stability (°/h)	0.0065					
ARW (°/√h)	0.003					
Correction type with GNSS ⁽⁴⁾	SPS Natural	SBAS	DGNSS	PPP ⁽⁵⁾	RTK ⁽⁶⁾	PPK ⁽⁷⁾
Horizontal accuracy (X,Y) (m)	1.20	0.60	0.30	0.06	0.006 +0.5 ppm	0.006 +0.5 ppm
Vertical accuracy (Z) (m)	1.90	0.80	0.50	0.09	0.01 +1 ppm	0.01 +1 ppm
GNSS outage ⁽⁴⁾ of 60 seconds					RTK ⁽⁶⁾	PPK ⁽⁷⁾
Horizontal accuracy (X,Y) (m)					0.30	0.20
Vertical accuracy (X,Y) (m)					0.30	0.20

Operating range/Environment

Operating/storage temperature	-20 °C to +55 °C / -40 °C to +80 °C	
Rotation rate dynamic range	Up to 750 deg/s	
Acceleration dynamic range	±15 g	
MTBF	150,000 hours (System observed) 500,000 hours (FOG + Accelerometers)	
Heading/roll/pitch	0 to +360 deg / ±180 deg / ±90 deg	
Special conditions	No warm-up effects, shock and vibration proof	
Shocks	27g / 15ms damper shocks	

Physical characteristics

Dimensions (L x W x H)	180 x 180 x 162 mm
Weight in air	5.5 kg
Material	Aluminum

Interfaces

Serial	RS422 or RS232	
Ethernet	100 Mbit - UDP / TCP server / TCP client / web server (GUI) / NTP synchro	
Pulses	PPS input for < 100 µs time synchronization	
Inputs/outputs	Configurable 7i / 5o - Pulses 4i / 2o - Configuration port	
Baud rates	Up to 460 kbaud	
Data output rate	0.1 Hz to 200 Hz real measurements	
Power supply/consumption	24 VDC (20-32 V) / 20 W typ. @24V/23°C (unloaded)	

⁽¹⁾ Secant latitude = 1/cosine (latitude)

atmospheric conditions and other environmental effects.

(5) Precise Point Positioning (requires service subscription).

(6) Real-Time Kinematic, up to 40km from base station.

(7) Post Processing Kinematic using Delph INS post-processing software (smart coupling of INS and GNSS in forward/backward).

All specifications subject to change without notice

⁽²⁾ Typical RMS performance.

⁽³⁾ Whichever is greater for wave periods up to 30 seconds. Smart Heave is delayed

by 100 s fixed value. Real-time heave accuracy is 5 cm or 5% whichever is greater for period up to 25s.

 $[\]stackrel{\cdot}{\text{(4)}}$ Actual results depending on the quality of the GNSS system used, satellite configuration,